

CAPITAL STRUCTURE

As of Aug 31st, 2025

35,693,302

ISSUED & OUTSTANDING

12,361,488

WARRANTS

1,660,000 OPTIONS

49,714,790

FULLY DILUTED

MANAGEMENT & DIRECTORS

Clive Massey

PRESIDENT, CEO & DIRECTOR

Mr. Massey is currently the president and CEO of Atomic Minerals. He has held directorships and senior management positions with various TSX Venture Exchange listed companies, including CEO of Redhill Resources, Windfire Capital, Aldever Resources, Prescient Mining and Universal Uranium, and has coordinated the marketing programs for many successful public companies.

Alexander Helmel

CFO & DIRECTOR

Mr. Helmel has served as CFO and director of several junior mining and early-stage venture companies within the Canadian capital markets, including Lateral Gold Corp., Fandom Sports Media Corp., and Tasca Resources Ltd. Mr. Helmel focuses on corporate governance, private to public market transitions, the development of senior management teams and corporate growth strategies.

Richard 'Dick' Dorman

INDEPENDENT DIRECTOR

Mr. Dorman's experience spans more than 46 years and covers all aspects of mineral exploration. He has extensive experience with sediment-hosted mineralized deposits in Colorado, Wyoming, Utah, Arizona and Nevada.

Matthew Schwab

DIRECTOR

Mr. Matthew Schwab is a highly regarded exploration geologist with over 15 years' experience in resource exploration and development. His work has been pivotal to the discovery, advancement, and sale of multiple uranium deposits in Canada. Currently, he serves as the CEO and a Board member of Stallion Uranium Corp., focused on uranium exploration in the Athabasca Basin.

TECHNICAL CONSULTANTS

Mark Steen

GEOLOGICAL CONSULTANT

Mr. Steen attended the Mackay School of Mines, University of Nevada. Mark has spent a lifetime involved in uranium production and exploration and has successfully researched and secured properties for major uranium companies. His extensive knowledge of the geology of uranium ore deposits and the history of uranium exploration led him to select Atomic Mineral's land position. His father, Charles A. Steen, discovered the 'Mi Vida' uranium mine in the state of Utah, one of the largest discoveries of uranium in the world during the 1950s and arguably triggered the world's first uranium boom.

Jeff McCleary B.S., M.S.

GEOLOGICAL CONSULTANT

Mr. McCleary was a senior level geologist for the proposed High Level Nuclear Waste Repository at Yucca Mountain, Nevada. Mr. McCleary, who is currently working independently, has over 45 years of experience as a geologist and manager with ISSI, URS, and Woodward-Clyde. Mr. McCleary's professional expertise includes; stratigraphy, structural geology, geologic model development, and quaternary geology. Most of his work has been on large, multidisciplinary projects that require the integration of numerous datasets in order to achieve success. He is a member of the Geological Society of America and Friends of the Pleistocene.

URANIUM: POWERING THE SUSTAINABLE FUTURE

Solar, geothermal and wind have scale and economic related limits - Uranium is the most economically cost-effective solution for the looming worldwide power shortage*

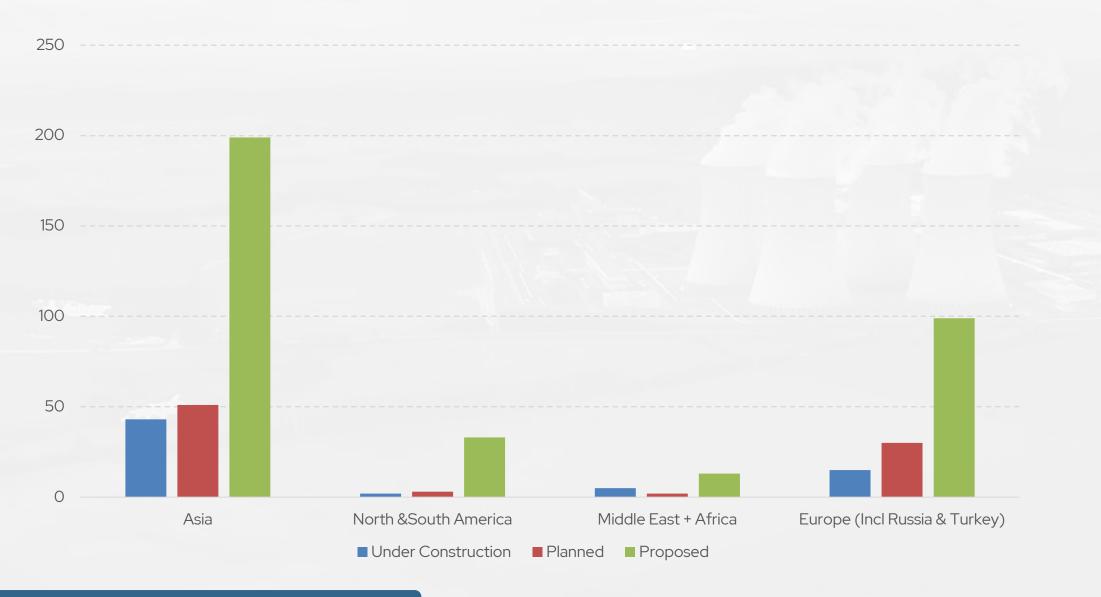
https://www.oecd-nea.org/jcms/pl_60360/the-most-cost-effective-decarbonisation-investment-long-term-operation-ofnuclear-power-plants

A single uranium fuel pellet—about the size of a fingertip—contains as much energy as approximately 1 ton of coal or 149 gallons of oil*

*https://www.energy.gov/ne/articles/nuclear-fuel-facts-uranium


In 2024 global electricity consumption was approx. 29,925 terawatt-hours (TWh). **Global demand is projected to reach up to 75,000 TWh by 2050, a 250% increase.***

*https://www.iea.org/reports/world-energy-outlook-2024/executive-summary


Countries with nuclear energy programs powered by uranium can reduce their dependency on imported fossil fuels, enhancing national security and economic stability*

*https://world-nuclear.org/information-library/economic-aspects/energy-security.aspx

DEMAND FOR NUCLEAR POWER DRIVING NEW PLANT CONSTRUCTION

Approximately **440 reactors** are operating across 31 countries, generating around **9% of the world's electricity.** An additional 65 nuclear reactors are currently under construction worldwide, with about 90 more planned. With over 30 countries considering or starting nuclear power programs, **global interest in nuclear energy continues to grow as a reliable and clean source of electricity.**

URANIUM POSITIVE MARKET OUTLOOK

Western Supply Chain Shift: Utilities are prioritizing uranium from low-risk jurisdictions (U.S., Canada, Australia), moving away from Russia and Niger.

(Source: Financial Times, January 2025)

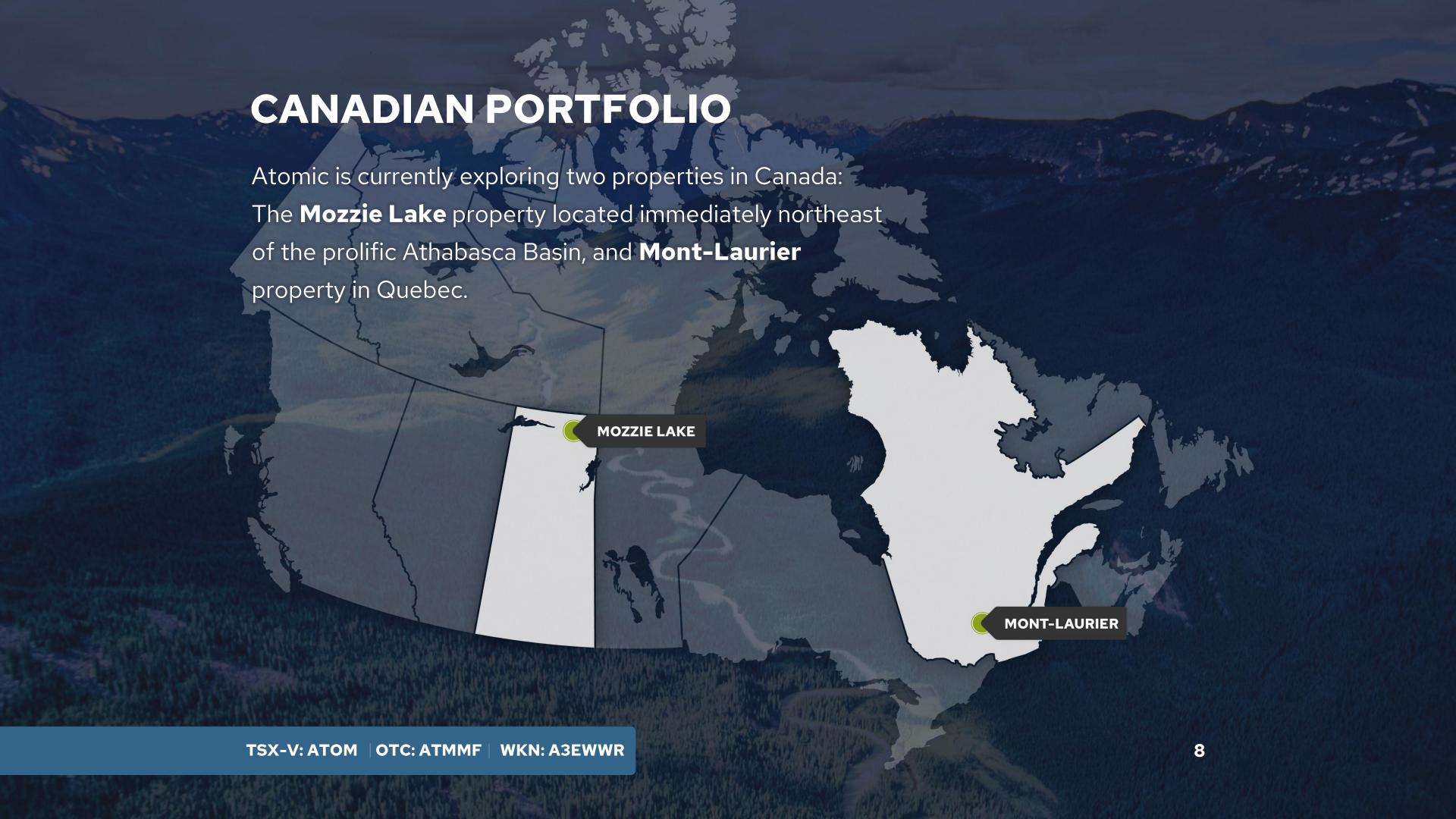
Political Momentum for Nuclear: Nuclear enjoys bipartisan political support in the U.S. and growing backing in Europe and Asia as countries pursue carbon-neutral goals. (Source: IEA Electricity Market Report 2025)

Long Lead Times for New Mines: Permitting, financing, and building new uranium mines takes 10–15 years, constraining supply.

(Source: Sprott Uranium Report, 2025)

Growing Supply-Demand Gap: Global uranium production covers only about 75% of reactor demand, creating a continual shortfall of 40~45 million lbs annually.

(Source: World Nuclear Fuel Report, 2024-2025)



U.S. Strategic Uranium Reserve: The U.S. Department of Energy continues building its reserve, with multi-million-pound purchases of domestically produced U3O8. (Source: U.S. DOE Press Release, February 2025)

Market Rebalancing Accelerated: With inventories shrinking and secondary supply diminishing, spot uranium prices exceeded \$100/lb in 2025

(Source: UxC Uranium Market Outlook, Q1 2025)

MOZZIE LAKE

ATHABASCA BASIN EDGE · SASKATCHEWAN

The Mozzie Lake project consists of two properties situated approximately 25km northeast of the Athabasca Basin, located within the Charlebois-Higgingson Lake Uranium District. Uranium mineralization on the properties is hosted within pegmatite intrusions.

Pegmatite deposits of the Charlebois-Higgingson Lake
Uranium District have remained largely dormant since it was
first explored in the 1940's. There are historical references
to rare-earth-element (REE) bearing minerals in the region,
including at the Pinkham Lake prospects on the Mozzie Lake
property. Atomic believes that a re-evaluation of the district
with respect to REE mineralization should be conducted to
potentially bolster the uranium potential of the project.

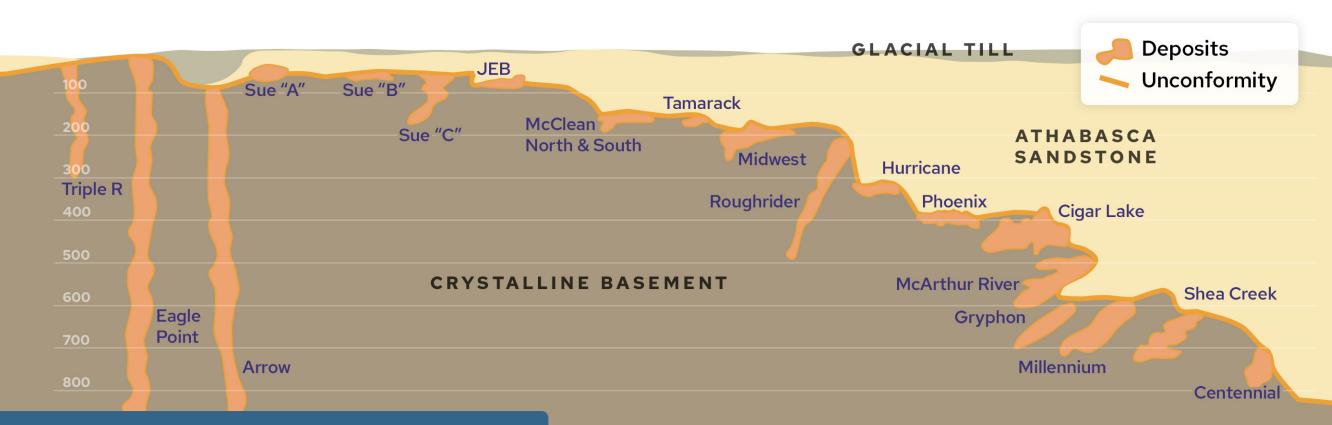
Atomic is targeting basement-hosted uranium at Mozzie Lake.

20A Zone

Historical resource* estimate at the 20A zone: 204,200 tons at 0.119% U308 at an average width of 15.8 feet (4.8 metres), containing 535,718 pounds of uranium.

*Two programs of diamond drilling in 1967 and 1968 identified an historic resource of 208,300 tons grading 0.118% U3O8, approximately 491,588 pounds of U3O8. The resource was disclosed in Kings Resources Company Exploration - 1968 Permit 3 Area Athabasca Mining District, Saskatchewan by B.G. Gislason and C.M Trigg Dated November 1968. The Company feels the historic estimate is relevant because it speaks to the potential of the Mozzie Lake property and reliable as it was completed to the standards of the day by competent geologists. The historic estimate appears to be calculated from cross sections, under the assumption that the pegmatite bodies hosting the mineralization are conformable with the enclosing rock. Only mineralized sections grading 0.05 per cent U3O8 or greater were included in the calculation. The historic estimates are classified as drill indicated, which would be comparable to an inferred resource. The Company would need to twin a number of the 1967 and 1968 drill holes to move the historic estimate to a current inferred resource.

Atomic cautions investors a qualified person has not done sufficient work to classify the historical estimate as current mineral resources and further cautions the Company is not treating the historical estimate as current mineral resources.



TSX-V: ATOM | OTC: ATMMF | WKN: A3EWWR

BASEMENT-HOSTED URANIUM

MOZZIE LAKE · SASKATCHEWAN

Basement-hosted uranium deposits are a unique and highly valuable mineralization in the Athabasca Basin. These deposits are characterized by their location in close proximity to the unconformity between the older basement rocks and overlying sandstone formations. Notable examples include Fission Uranium's (TSX: FCU) Triple R deposit and NexGen Energy's (TSX: NXE) Arrow deposit, which showcase the potential of this deposit type. Basement-hosted uranium deposits represent a promising investment opportunity due to their high-grade nature and exploration potential.

Mont-Laurier Project

MONT-LAURIER

The Mont-Laurier Uranium Property totals 2,353 ha is located approximately 40 kilometres northeast of the town of Mont-Laurier in the Laurentides region of Quebec. The property is easily accessible via the Pérodeau road, which bisects the property and follows the east side of the Lièvre river. The Pérodeau road is paved for 6.6 kilometres up to the western limit of the claim block and then turns into a well-maintained gravel road.

Mont-Laurier

REGIONAL HISTORY

MONT-LAURIER · QUEBEC

The Mont-Laurier project lies within the Cabonga – Mont-Laurier radioactive district of the Grenville Geological Province. Exploration activity in the district was sparked by the discovery of uranium mineralization by Canadian Johns-Manville in 1967, with subsequent exploration outlining several gently-dipping stratiform zones of low-grade uranium mineralization and numerous isolated showings. The **uraniferous**horizons () occur at the base of a metamorphosed sedimentary sequence of Proterozoic age. Several notable zones () with estimated tonnages (pre-NI 43-101) have been outlined:

Allied Mining¹:

- Zone 1 (8.37 Mt @ 0.021% U3O8)
- Zone 2 (2.61 Mt @ 0.019% U3O8)
- Zone 3 (2.34 Mt @ 0.014% U3O8)

Canadian Johns-Manville²:

Meekos (0.52 Mt @ 0.054% U308)

Mont Laurier Uranium Mines³:

- Tom Dick (2.50 Mt @ 0.040% U308)
- Tom Dick Nord (0.30 Mt @ 0.027% U308)

All of the historic estimates are relevant as they attest to the potential of the Mont Laurier area and are assumed to be reliable as they were completed to the standards of the day. All of the above the historic estimates would be considered inferred resource under NI43-101. In all cases, verification of the historic drilling by twinning a series of holes would be require to verify each of the historic resource estimates. A Qualified Person has not done sufficient work to classify these historic resources as current mineral resources, and Atomic Minerals is not treating these historic estimates as current mineral resources.

Mont Laurier
Uranium Mines

- 1. Report on the Properties of Allied Mining Corporation and United Asbestos Corporation Limited, Leman Township, Montcalm County by J.D. Hagan March 31, 1970. (https://gq.mines.gouv.qc.ca/documents/EXAMINE/GM26044/)
- The Allied historic estimates are based on 34 drill holes, totaling 5,091 feet (1,551.7 metres). The only key assumption, parameter or method provided in the report is the historic resources were calculated using cross sections.
- 2. Summary Report Covering Exploration For Uranium Mineralization During 1968-69 on Company Mining Claims in Ontario and Quebec by F.J. Evelegh, November 28, 1969 for Canadian Johns-Manville Co. Limited. (https://gq.mines.gouv.qc.ca/documents/EXAMINE/GM25420/)
- The Meekos historic estimate is based on 184 drill holes, totaling 39,568 feet (12,060.3 metres). No details on key assumptions, parameters or methods were provided in the report.
- 3. Tom Dick and Central Groups September 26, 1972 by R.F. Kaltwasser For Les Mines D'Uranium Mont-Laurier Inc. https://gq.mines.gouv.qc.ca/documents/EXAMINE/GM28052/.

Allied

Mining

Canadian

Johns-Manville

- The Tom Dick historic estimate is based on 83 drill holes, totaling 15,000 feet (4,572 metres). No details on key assumptions, parameters or methods were provided in the report.
- 3. Les Mines D'Uranium Mont-Laurier Inc. Cantons Leman & Perodeau Campagne de Sondages Juillet Septembre 1973 by G. Hébert and M. Vallée Le 21 décembre 1973. (https://gg.mines.gouv.gc.ca/documents/EXAMINE/GM29783/).

The Tom Dick Nord historic estimate is based on 11 drill holes, totaling 4,193 feet (1,278 metres). No details on key assumptions, parameters or methods were provided in the report.

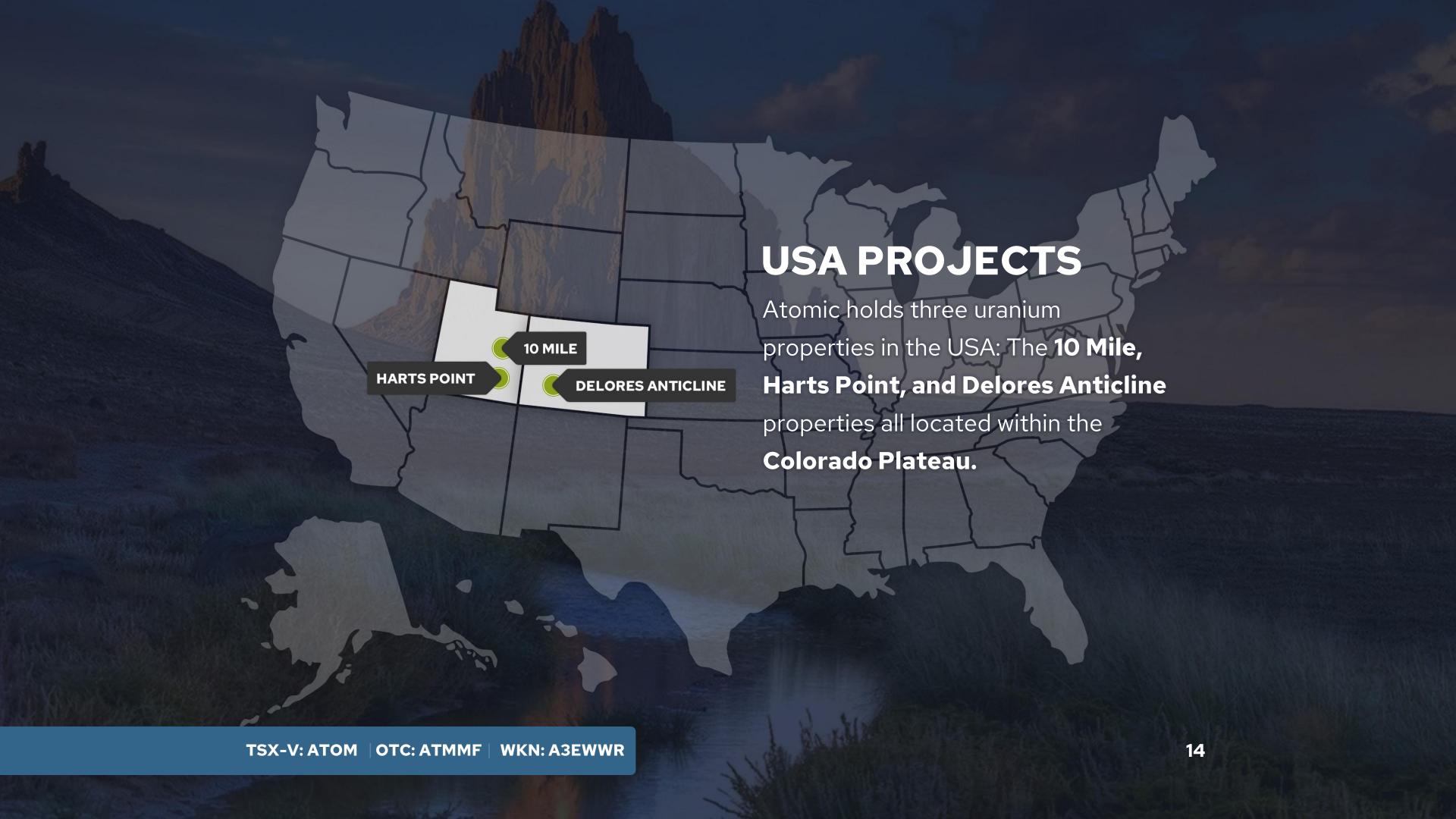
TSX-V: ATOM | OTC: ATMMF | WKN: A3EWWR

2025 WORK PROGRAMS

CANADIAN PORTFOLIO

Mozzie Lake

A program of airborne magnetics and radiometrics is planned to trace known pegmatites along strike and identify potential additional uranium bearing pegmatites.



Atomic also plans to send field crews on the ground to sample known showings to verify earlier sampling results.

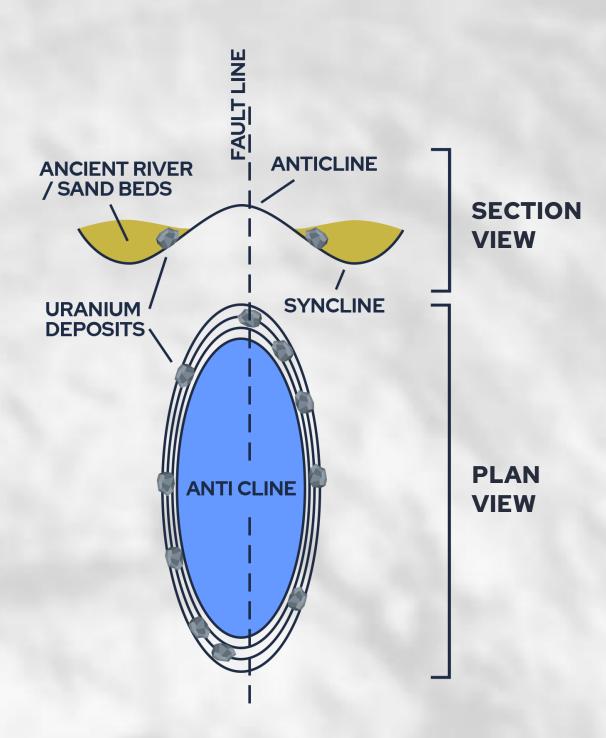
Mont-Laurier

Atomic has reviewed historical data and is planning an airborne magnetics and radiometrics program.

COLORADO PLATEAU

The Colorado Plateau stands as the most prolific uranium-producing region in the United States, with a storied production history dating back to the 1950s and a remarkable **597 million pounds of U**₃**O**₈ **produced to date**. This world-class uranium district is underpinned by exceptional geology, with uranium mineralization concentrated primarily within the Jurassic Morrison Formation (Salt Wash Member) and the Triassic Chinle Formation (Moss Back and Shinarump Members).

Over time, uranium concentrated along the flanks of anticlines, creating highly prospective targets.



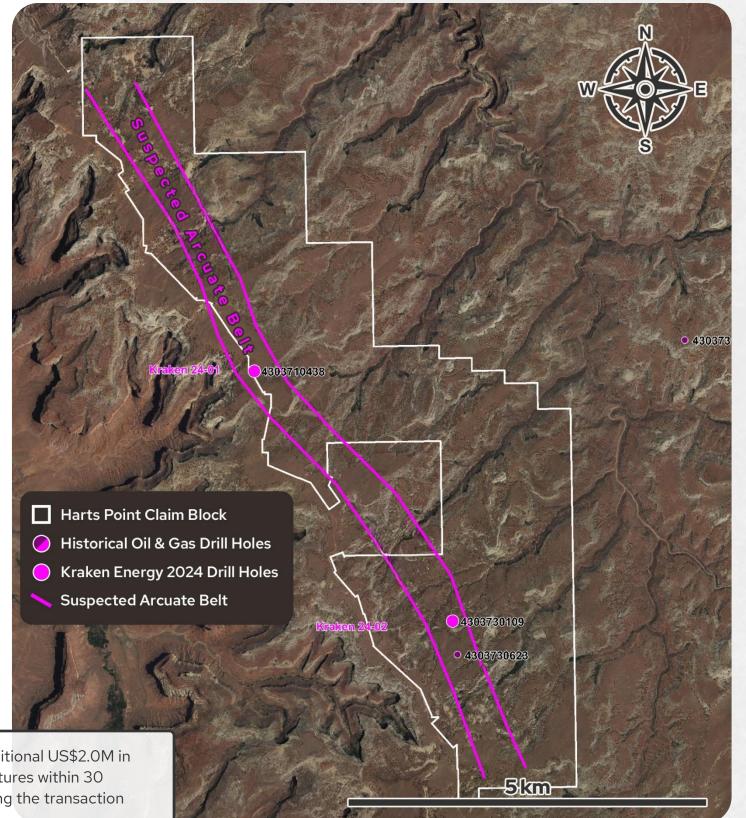
PLAN AND SECTION VIEW OF AN ANTICLINE

COLORADO PLATEAU · USA

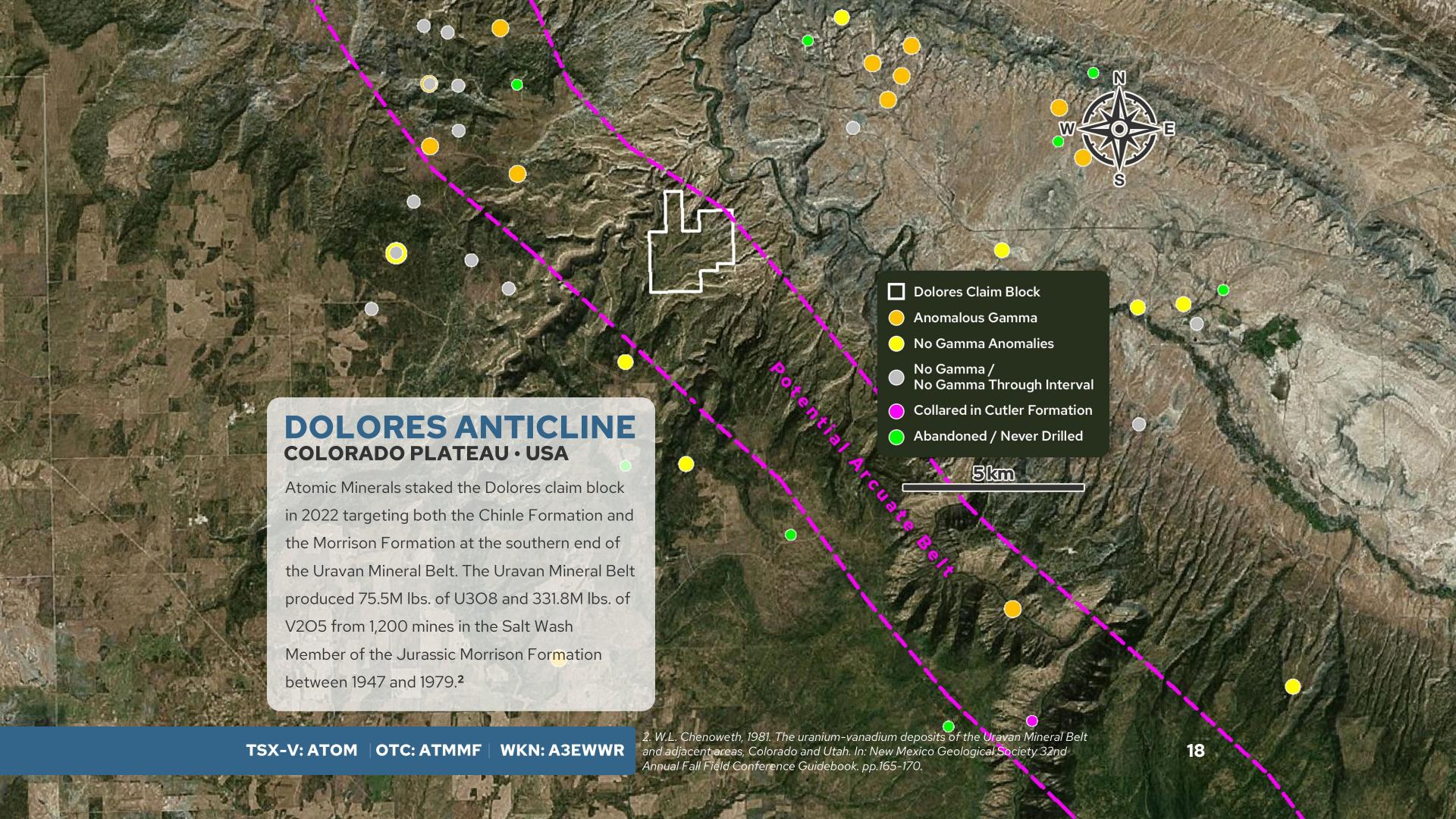
This diagram illustrates the structural geology associated with anticline-hosted uranium deposits. The section view depicts an anticline - a geological formation characterized by upwardly folded sedimentary rock layers alongside a complementary downward fold, or syncline. Uranium deposits, carried historically by ancient river systems into sand beds, have naturally accumulated at these structural traps. In the plan view, uranium deposits are shown arranged concentrically around the anticline structure, indicating predictable patterns beneficial for targeted exploration and efficient extraction.

Anticlines represent favorable geological settings for uranium resources, providing clear opportunities for economically viable and structurally controlled mineral development.

HARTS POINT COLORADO PLATEAU · USA


The Harts Point Project consists of 324 claims and covers the flank of the Harts Point anticline, approximately 40 miles by road west of Energy Fuels Inc.'s White Mesa Mill uranium processing facility. Three historic oil and gas holes drilled approximately 2.8 miles apart all located gamma ray log anomalies within the basal portion of the Chinle Formation.

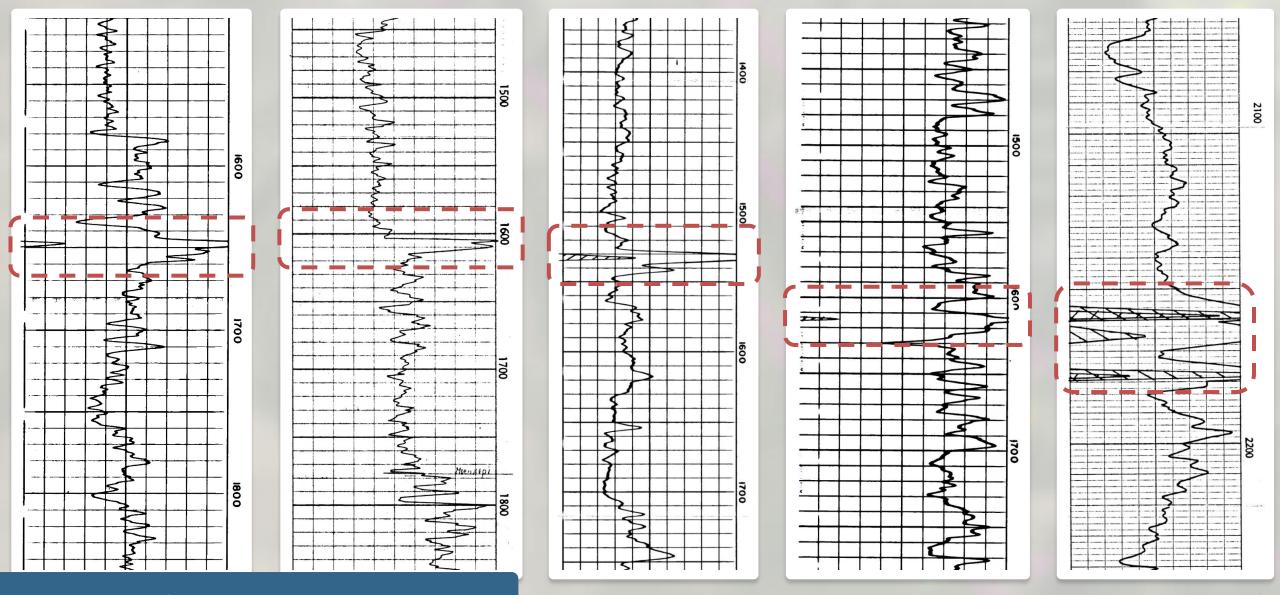
Downhole Gamma Probe Results:

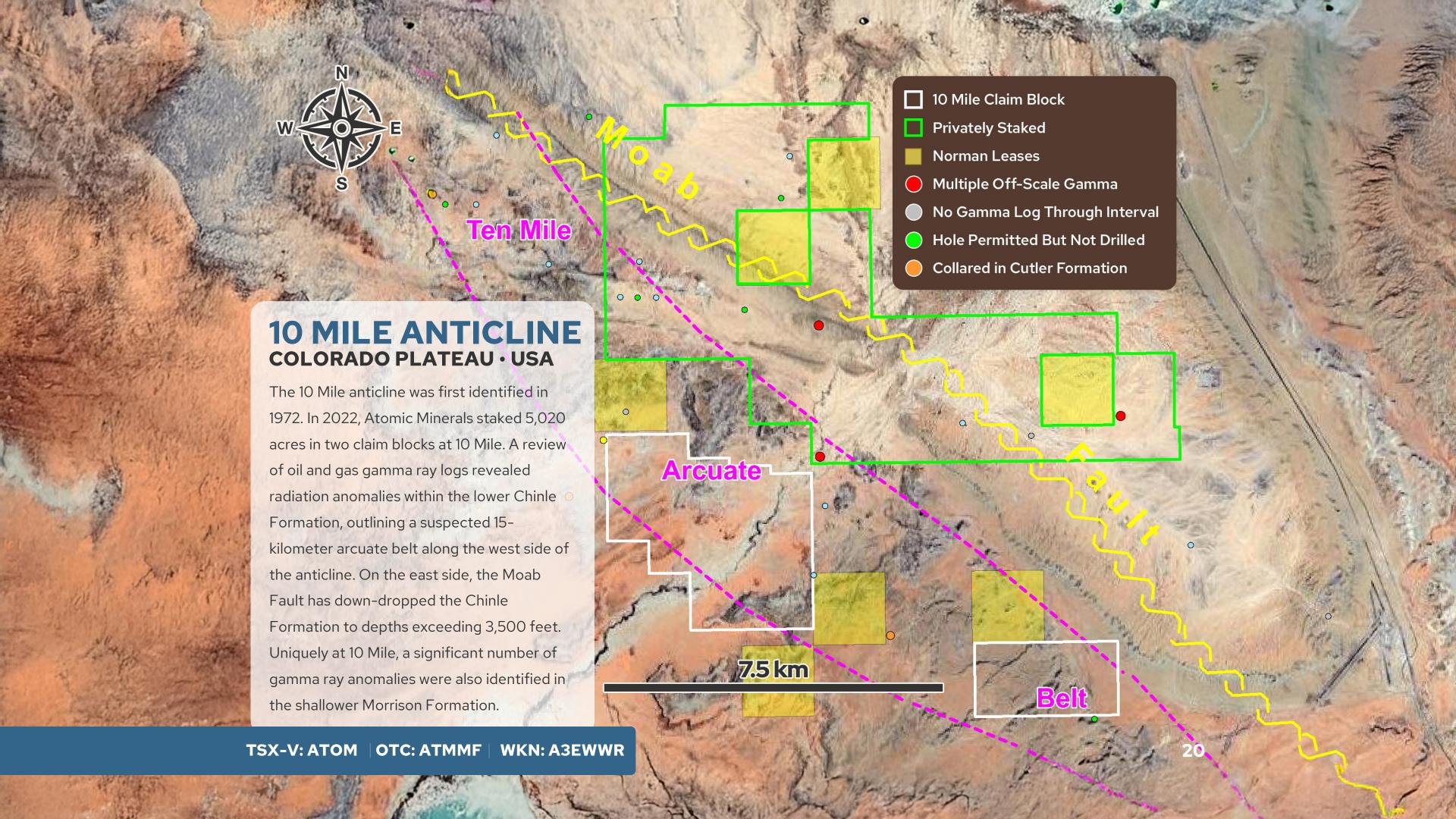

- Drillhole HP24-001 intersected a total of 12.9 m (42.3 ft) of elevated radioactivity with downhole probe readings from 252 counts per second ("cps") up to 653 cps from 151.5 to 421.5 m (497.0 to 1,382.8 ft)
- Drillhole HP24-001 Including 270 to 653 cps over 1.0 m
 (3.2 ft) from 415.1 to 416.1 m (1,361.9 to 1,365.1 ft)
- Drillhole HP24-002 intersected a total of 16.2 m (53.1 ft)
 of elevated radioactivity with downhole probe readings
 from 252 cps up to 2,162 cps from 107.8 to 390.4 m (353.6
 to 1,280.7 ft)
- Drillhole HP24-002 Including 263 to 2,162 cps over 2.4
 m (7.9 ft) from (1,261.2 to 1,269.1 ft)

Kraken Energy Corp. (CSE: UUSA) holds an option to acquire up to 75% of the Harts Point Uranium Property by:

- Issuing 2.0m shares to Atomic
- Incurring US\$1.5M in exploration expenditures within 18 months of closing the transaction
- Incurring an additional US\$2.0M in eligible expenditures within 30 months of closing the transaction
- Granting Atomic a 2.0% NSR

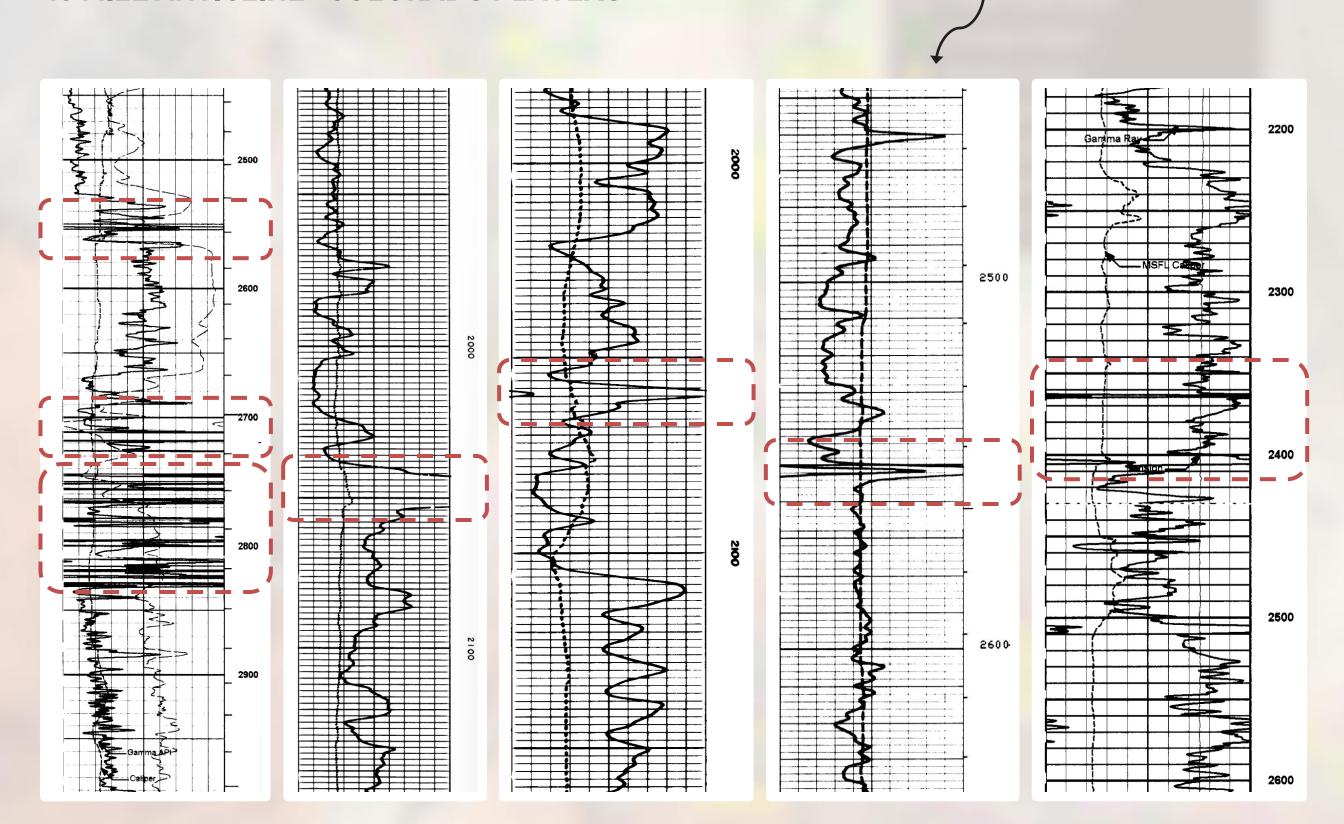
^{*} Background gamma readings through non-elevated zones typically range from 10-150 cps on the borehole gamma probe


CHINLE GAMMA LOGS


DOLORES ANTICLINE • COLORADO PLATEAU

A review of oil and gas gamma ray logs located lower Chinle radiation anomalies that appear to define a suspected 50km long arcuate belt along the anticline radioactivity has also been noted at the base of the Chinle Formation where it outcrops in the Dolores River Canyon¹. The oil and gas gamma ray logs also located radiation anomalies in the Salt Wash Member of the Morrison Formation.

Anomalous Chinle gamma readings from the five holes at Dolores



CHINLE GAMMA LOGS

10 MILE ANTICLINE • COLORADO PLATEAU

Anomalous Chinle gamma readings from the five holes at 10 Mile

2025 EXPLORATION PLANS

COLORADO PLATEAU · USA

Harts Point

- Atomic Minerals, in partnership with Kraken Energy, is advancing the drill permitting process for the 6,500-acre Harts Point Uranium Project.
- The Bureau of Land Management has received the permit application and is currently reviewing it. The proposed exploration program plans to drill fifteen sites targeting uranium mineralization within the basal Moss Back Member of the Chinle Formation.

Dolores Anticline

Atomic Minerals has completed

 a thorough review of historical
 drilling data and is preparing to
 commence the permitting
 process. Plans for exploratory
 drilling are guided by historical
 data indicating potential uranium
 mineralization in the Moss Back
 Member of the Chinle

 Formation.

10 Mile

The permitting process has been initiated for the 10 Mile Anticline
 Project, where historical oil and gas drilling has indicated potential uranium mineralization.
 The plan includes conducting exploratory drilling to further assess the uranium potential.

CAUTIONARY STATEMENT

This presentation (the "Presentation") has been prepared solely for information purposes in connection with the contemplated issue of shares in Atomic Minerals Corp. ("Atomic Minerals" or the "Company") and is being furnished by Atomic Minerals to a limited number of parties (the "Recipients") who have a potential interest in subscribing for shares in the Company. The Presentation is strictly confidential and any disclosure, use, copying and circulation of this Presentation is prohibited without the consent of the Company. The information contained in this Presentation does not constitute or form part of, and should not be construed as, an offer or invitation to subscribe for or purchase the securities discussed herein in any jurisdiction. Neither this Presentation nor any part of it shall form the basis of, or be relied upon in connection with any offer, or act as an inducement to enter any contract or commitment whatsoever. No representation or warranty is given, express or implied, as to the accuracy of the information contained in this Presentation. All statements in this presentation, other than statements of historical fact, are "forward-looking information" with respect to Atomic Minerals (within the meaning of applicable securities laws including, without limitation economic estimates and statements related to estimated development costs. Atomic Minerals provides forward-looking statements for the purpose of conveying information about current expectations and plans relating to the future and readers are cautioned that such statements may not be appropriate for other purposes. By its nature, this information is subject to inherent risks and uncertainties that may be general or specific and which give rise to the possibility that expectations, forecasts, predictions, projections, or conclusions will not prove to be accurate, that assumptions may not be correct, and that objectives, strategic goals and priorities will not be

achieved. These risks and uncertainties include but are not limited to exploration findings, developing results and recommendations in connection with the updated the Company's properties, as well as those risks and uncertainties identified and reported in Atomic Minerals public filings under the SEDAR+ profile at www.sedarplus.ca. Although Atomic Minerals has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking information, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that such information will prove to be accurate as actual results, and future events could differ materially from those anticipated in such statements. Atomic Minerals disclaims any intention or obligation to update or revise any forwardlooking information, whether as a result of new information, future events or otherwise unless required by law. All historic production, drill or sample figures quoted herein are based on prior data and reports obtained and prepared by previous operators. The Company has not completed the work necessary to verify results. The historical figures should not be relied upon and have not been verified by a Qualified Person.

The technical content of the presentation has been reviewed and approved by R. Timothy Henneberry, P.Geo (BC) and Advisor to the Company and a Qualified Person under National Instrument 43-101.

#830 - 1100 Melville St. Vancouver, BC, V6E 4A6

- +1604-341-6870
- info@atomicminerals.ca
- www.atomicminerals.ca